Global Warming and Mass Mortalities of Benthic Invertebrates in the Mediterranean Sea
نویسندگان
چکیده
Satellite data show a steady increase, in the last decades, of the surface temperature (upper few millimetres of the water surface) of the Mediterranean Sea. Reports of mass mortalities of benthic marine invertebrates increased in the same period. Some local studies interpreted the two phenomena in a cause-effect fashion. However, a basin-wide picture of temperature changes combined with a systematic assessment on invertebrate mass mortalities was still lacking. Both the thermal structure of the water column in the Mediterranean Sea over the period 1945-2011 and all documented invertebrate mass mortality events in the basin are analysed to ascertain if: 1- documented mass mortalities occurred under conditions of positive temperature trends at basin scale, and 2- atypical thermal conditions were registered at the smaller spatial and temporal scale of mass mortality events. The thermal structure of the shallow water column over the last 67 years was reconstructed using data from three public sources: MEDAR-MEDATLAS, World Ocean Database, MFS-VOS programme. A review of the mass mortality events of benthic invertebrates at Mediterranean scale was also carried out. The analysis of in situ temperature profiles shows that the Mediterranean Sea changed in a non-homogeneous fashion. The frequency of mass mortalities is increasing. The areas subjected to these events correspond to positive thermal anomalies. Statistically significant temperature trends in the upper layers of the Mediterranean Sea show an increase of up to 0.07°C/yr for a large fraction of the basin. Mass mortalities are consistent with both the temperature increase at basin scale and the thermal changes at local scale, up to 5.2°C. Our research supports the existence of a causal link between positive thermal anomalies and observed invertebrate mass mortalities in the Mediterranean Sea, invoking focused mitigation initiatives in sensitive areas.
منابع مشابه
Global warming-enhanced stratification and mass mortality events in the Mediterranean.
Summer conditions in the Mediterranean Sea are characterized by high temperatures and low food availability. This leads to "summer dormancy" in many benthic suspension feeders due to energetic constraints. Analysis of the most recent 33-year temperature time series demonstrated enhanced stratification due to global warming, which produced a approximately 40% lengthening of summer conditions. Ma...
متن کاملSnapshot of a Bacterial Microbiome Shift during the Early Symptoms of a Massive Sponge Die-Off in the Western Mediterranean
Ocean warming is affecting marine benthic ecosystems through mass mortality events that involve marine invertebrates, in particular bivalves, corals, and sponges. Among these events, extensive die-offs of Ircinia fasciculata sponges have been recurrently reported in western Mediterranean. The goal of our study was to test whether the temperature-related mass sponge die-offs were associated with...
متن کاملA Sea Change – Exotics in the Eastern Mediterranean
The eastern Mediterranean is susceptible to biological invasions because of its placement between the Atlantic, Pontic and Erythrean regions, busy maritime traffic, and lagoons and bays that are crowded with fish and shellfish farms. However, the greatest influx of invaders resulted from the opening of the Suez Canal in 1869, which allowed entry of Indo-Pacific and Erythrean biota. Exotic macro...
متن کاملThe effect of Rainbow trout farms effluents on benthic macro-invertebrates of Marber River in Semirom
The effect of Rainbow trout farms effluents on benthic macro-invertebrates of Marber River in Semirom city was investigated in spring and summer of 2013. Sampling from benthic macro-invertebrates was done monthly using Surber sampler (mouth area of 30.5 * 30.5 cm with a 500 mesh net) at entrance, discharge and far from three fish farms. In addition to measuring physical and chemical parameters ...
متن کاملEffects of climate change on Mediterranean marine ecosystems: the case of the Catalan Sea
The Catalan Sea, located between the eastern Iberian coast and the Balearic Islands, is a representative portion of the western Mediterranean basin and provides a valuable case study for climate change effects on Mediterranean ecosystems. Global warming is reflected regionally by a rise in sea level over the last century, an increase in surface temperature of around 1.1°C in the last 35 yr, a p...
متن کامل